Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(12): 102673, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36336077

RESUMO

Autophagy is a lysosomal degradation pathway important for neuronal development, function, and survival. How autophagy in axons is regulated by neurotrophins to impact neuronal viability and function is poorly understood. Here, we use live-cell imaging in primary neurons to investigate the regulation of axonal autophagy by the neurotrophin brain-derived neurotrophic factor (BDNF) and elucidate whether autophagosomes carry BDNF-mediated signaling information. We find that BDNF induces autophagic flux in primary neurons by stimulating the retrograde pathway for autophagy in axons. We observed an increase in autophagosome density and retrograde flux in axons, and a corresponding increase in autophagosome density in the soma. However, we find little evidence of autophagosomes comigrating with BDNF. In contrast, BDNF effectively engages its cognate receptor TrkB to undergo retrograde transport in the axon. These compartments, however, are distinct from LC3-positive autophagic organelles in the axon. Together, we find that BDNF stimulates autophagy in the axon, but retrograde autophagosomes do not appear to carry BDNF cargo. Thus, autophagosomes likely do not play a major role in relaying neurotrophic signaling information across the axon in the form of active BDNF/TrkB complexes. Rather, BDNF likely stimulates autophagy as a consequence of BDNF-induced processes that require canonical roles for autophagy in degradation.


Assuntos
Axônios , Fator Neurotrófico Derivado do Encéfalo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Axônios/metabolismo , Neurônios/metabolismo , Autofagia/fisiologia , Autofagossomos/metabolismo , Transporte Axonal/fisiologia
2.
J Neurosci ; 42(45): 8524-8541, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36167783

RESUMO

Autophagy and endocytic trafficking are two key pathways that regulate the composition and integrity of the neuronal proteome. Alterations in these pathways are sufficient to cause neurodevelopmental and neurodegenerative disorders. Thus, defining how autophagy and endocytic pathways are organized in neurons remains a key area of investigation. These pathways share many features and converge on lysosomes for cargo degradation, but what remains unclear is the degree to which the identity of each pathway is preserved in each compartment of the neuron. Here, we elucidate the degree of intersection between autophagic and endocytic pathways in axons of primary mouse cortical neurons of both sexes. Using microfluidic chambers, we labeled newly-generated bulk endosomes and signaling endosomes in the distal axon, and systematically tracked their trajectories, molecular composition, and functional characteristics relative to autophagosomes. We find that newly-formed endosomes and autophagosomes both undergo retrograde transport in the axon, but as distinct organelle populations. Moreover, these pathways differ in their degree of acidification and association with molecular determinants of organelle maturation. These results suggest that the identity of autophagic and newly endocytosed organelles is preserved for the length of the axon. Lastly, we find that expression of a pathogenic form of α-synuclein, a protein enriched in presynaptic terminals, increases merging between autophagic and endocytic pathways. Thus, aberrant merging of these pathways may represent a mechanism contributing to neuronal dysfunction in Parkinson's disease (PD) and related α-synucleinopathies.SIGNIFICANCE STATEMENT Autophagy and endocytic trafficking are retrograde pathways in neuronal axons that fulfill critical degradative and signaling functions. These pathways share many features and converge on lysosomes for cargo degradation, but the extent to which the identity of each pathway is preserved in axons is unclear. We find that autophagosomes and endosomes formed in the distal axon undergo retrograde transport to the soma in parallel and separate pathways. These pathways also have distinct maturation profiles along the mid-axon, further highlighting differences in the potential fate of transported cargo. Strikingly, expression of a pathogenic variant of α-synuclein increases merging between autophagic and endocytic pathways, suggesting that mis-sorting of axonal cargo may contribute to neuronal dysfunction in Parkinson's disease (PD) and related α-synucleinopathies.


Assuntos
Doença de Parkinson , Sinucleinopatias , Animais , Camundongos , Masculino , Feminino , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Axônios/fisiologia , Neurônios/fisiologia , Autofagia/fisiologia , Lisossomos/metabolismo , Endossomos/metabolismo , Transporte Axonal
3.
J Cell Biol ; 220(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33783472

RESUMO

Macroautophagy (hereafter "autophagy") is a lysosomal degradation pathway that is important for learning and memory, suggesting critical roles for autophagy at the neuronal synapse. Little is known, however, about the molecular details of how autophagy is regulated with synaptic activity. Here, we used live-cell confocal microscopy to define the autophagy pathway in primary hippocampal neurons under various paradigms of synaptic activity. We found that synaptic activity regulates the motility of autophagic vacuoles (AVs) in dendrites. Stimulation of synaptic activity dampens AV motility, whereas silencing synaptic activity induces AV motility. Activity-dependent effects on dendritic AV motility are local and reversible. Importantly, these effects are compartment specific, occurring in dendrites and not in axons. Most strikingly, synaptic activity increases the presence of degradative autolysosomes in dendrites and not in axons. On the basis of our findings, we propose a model whereby synaptic activity locally controls AV dynamics and function within dendrites that may regulate the synaptic proteome.


Assuntos
Autofagia , Movimento Celular , Dendritos/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Vacúolos/fisiologia , Animais , Autofagossomos/fisiologia , Axônios/fisiologia , Hipocampo/citologia , Lisossomos/fisiologia , Camundongos , Neurônios/citologia , Ratos , Ratos Sprague-Dawley
4.
Autophagy ; 16(9): 1651-1667, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31876243

RESUMO

Macroautophagy/autophagy is a key homeostatic process that targets cytoplasmic components to the lysosome for breakdown and recycling. Autophagy plays critical roles in glia and neurons that affect development, functionality, and viability of the nervous system. The mechanisms that regulate autophagy in glia and neurons, however, are poorly understood. Here, we define the molecular underpinnings of autophagy in primary cortical astrocytes in response to metabolic stress, and perform a comparative study in primary hippocampal neurons. We find that inducing metabolic stress by nutrient deprivation or pharmacological inhibition of MTOR (mechanistic target of rapamycin kinase) robustly activates autophagy in astrocytes. While both paradigms of metabolic stress dampen MTOR signaling, they affect the autophagy pathway differently. Further, we find that starvation-induced autophagic flux is dependent on the buffering system of the starvation solution. Lastly, starvation conditions that strongly activate autophagy in astrocytes have less pronounced effects on autophagy in neurons. Combined, our study reveals the complexity of regulating autophagy in different paradigms of metabolic stress, as well as in different cell types of the brain. Our findings raise important implications for how neurons and glia may collaborate to maintain homeostasis in the brain. ABBREVIATIONS: ACSF: artificial cerebrospinal fluid; baf A1: bafilomycin A1; EBSS: earle's balanced salt solution; GFAP: glial fibrillary acidic protein; Glc: glucose; GM: glial media; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; p-RPS6: phospho-RPS6; p-ULK1: phospho-ULK1; RPS6: ribosomal protein S6; SQSTM1/p62: sequestosome 1; ULK1: unc-51-like kinase 1.


Assuntos
Astrócitos/metabolismo , Autofagia , Neurônios/metabolismo , Estresse Fisiológico , Animais , Células Cultivadas , Camundongos Transgênicos , Neuroglia/metabolismo , Proteína Sequestossoma-1/metabolismo , Serina-Treonina Quinases TOR/metabolismo
5.
Methods Mol Biol ; 1880: 243-256, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30610702

RESUMO

Autophagy is an essential degradative pathway that maintains neuronal homeostasis and prevents axon degeneration. However, the mechanisms of autophagy in neurons are only beginning to be understood. To address this fundamental gap in knowledge, we have established several key methodologies for live-cell imaging and quantitative analysis of autophagy in primary hippocampal neurons. Using these methods, we have defined compartment-specific dynamics of autophagy in real-time under basal versus stress conditions. For example, we have characterized autophagosome biogenesis in the distal axon and subsequent retrograde transport to the soma for degradation. Autophagosomes are also generated locally within the soma. In contrast to the axon, the majority of autophagosomes in dendrites are stationary, while some exhibit bidirectional movement. These studies establish an initial road map for autophagosome dynamics in each compartment of the neuron and set the stage for a more detailed understanding of neuronal autophagy in stress and disease.


Assuntos
Autofagossomos/ultraestrutura , Autofagia , Microscopia de Fluorescência/métodos , Neurônios/citologia , Imagem Óptica/métodos , Animais , Axônios/ultraestrutura , Técnicas de Cultura de Células/métodos , Células Cultivadas , Dendritos/ultraestrutura , Hipocampo/citologia , Camundongos , Camundongos Transgênicos , Microscopia Confocal/métodos , Neuroglia/citologia , Neurônios/ultraestrutura
6.
J Cell Biol ; 217(9): 2977-2979, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30115668

RESUMO

How are lysosomal degradation pathways spatially organized in the complex landscape of a neuron? Cheng et al. (2018. J Cell Biol. https://doi.org/10.1083/jcb.201711083) and Yap et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201711039) characterize the distribution and function of endolysosomal organelles in neurons, providing insights into compartment-specific mechanisms regulating the neuronal proteome.


Assuntos
Endossomos , Lisossomos , Neurônios
7.
Dev Neurobiol ; 78(3): 298-310, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29197160

RESUMO

Autophagy is a lysosomal degradation pathway that is critical to maintaining neuronal homeostasis and viability. Autophagy sequesters damaged and aged cellular components from the intracellular environment, and shuttles these diverse macromolecules to lysosomes for destruction. This active surveillance of the quality of the cytoplasm and organelles is essential in neurons to sustain their long-term functionality and viability. Indeed, defective autophagy is linked to neurodevelopmental abnormalities and neurodegeneration in mammals. Here, we review the mechanisms of autophagy in neurons and functional roles for autophagy in neuronal homeostasis. We focus on the compartment-specific dynamics of autophagy in neurons, and how autophagy might perform non-canonical functions critical for neurons. We suggest the existence of multiple populations of autophagosomes with compartment-specific functions important for neural activity and function. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 298-310, 2018.


Assuntos
Autofagia/fisiologia , Neurônios/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...